
State of the art

Theme: Sampling algorithms: Stein Variational

Gradient Descent

Étudiant: Aymane EL Firdoussi

Encadrant: Pascal Bianchi

aymane.elfirdoussi@telecom-paris.fr

pascal.bianchi@telecom-paris.fr

Télécom Paris, Institut Polytechnique de Paris

January 26, 2023



Abstract

Stein Variational Gradient Descent (SVGD) algorithm is used to sample from

a target density which is known up to a multiplicative constant. In other words, it

is used to generate a random process following a certain law with density π w.r.t

the Lebesgue measure.

Although this algorithm is popular in practice, its theoretical study is limited to

a few recent works. In the population limit (limit of infinite particles), SVGD

performs gradient descent on the KL divergence with respect to π in the space of

probability distributions.

In summary, our goal is to do the following task :

Input : target density π

↓ algorithm
Output : x1, x2, ..., xn realizations of X ∼ π.

1



Contents

1 Introduction 1

2 Background on optimal transport theory 3

2.1 Gradient flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Wasserstein spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Langevin algorithm 10

4 Stein Variational Gradient descent 11

4.1 Wasserstein Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 SVGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Convergence of SVGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 From theory to practice 17

6 Improving SVGD 20

6.1 Improved SVGD with importance weights . . . . . . . . . . . . . . . . . 20

6.2 Laplacian Adjusted Wasserstein Gradient Descent . . . . . . . . . . . . . 22

6.3 Regularized SVGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusion 28

8 Appendix: Convergence under T1 29



1 Introduction

The task of sampling from a target distribution is common in many Machine learn-

ing tasks including Bayesian Machine learning, where the distribution of interest is the

posterior distribution of the parameters. Unfortunately, the posterior distribution is gen-

erally difficult to compute due to the presence of an intractable integral. Therefore, it is

most of the time known up to a multiplicative factor, and then takes the form:

π(x) = C exp(−F (x)) (1)

Where F : Rd −→ R is a function called the potential function.

In this context, many algorithms were developed to solve this problem including the

Langevin algorithm, which is a popular algorithm that is derived from a stochastic differ-

ential equation, and also the Stein Variational Gradient Descent, which is an algorithm

introduced by Liu and Wang [1] in 2016, and it seems to be more powerful than the

classical Langevin algorithm. These two algorithms are both considered as variational

inference algorithms, because they frame Bayesian inference problem into a determin-

istic optimization that approximates the target distribution with a simpler distribution

by minimizing their KL divergence (we will give more details in the next section). This

makes variational methods efficiently solvable by using off-the-shelf optimization tech-

niques, and easily applicable to large datasets (i.e ”big data”).

Recently, the Stein Variational Gradient Descent (SVGD) algorithm was introduced as

a non-parametric alternative to variational inference methods (in particular to Langevin

method) [10]. It uses a set of interacting particles to approximate the target distribution,

and applies iteratively to these particles a form of gradient descent of the relative entropy,

where the descent direction is restricted to belong to a unit ball in a Reproducing Kernel

Hilbert space (RKHS).

The empirical performance of this algorithm and its variants have been largely demon-

strated in various tasks in machine learning such as Bayesian inference, learning deep

probabilistic models, or reinforcement learning. In the population limit (limit of infinite

particles), the algorithm is known to converge to the target distribution under appropri-

ate growth assumptions on the potential (which we called F).

The literature on theoretical properties of SVGD is scarce compared to that of Langevin

algorithm, and limited to a few recent works.

Many improvements on the SVGD algorithm have been recently discovered, but they are

still poor, and sometimes limit the use of the algorithm to some really specific target

densities.

Contributions

Our contributions in this project consists mainly on providing a clear understand-

ing of the SVGD algorithm, by considering it as a gradient flow and by providing some

1



simulations to test its efficiency. We will explain clearly some notions on the optimal

transport theory and prove the continuity equation using an analogy in Physics, and we

will simplify the theory of gradient flows by providing some clear examples and by explain-

ing the intuition behind them. Such notions were needed for this project since we cannot

understand the theory behind SVGD and Langevin without knowing the Wasserstein

spaces and gradient flows. Hence, we have dedicated almost two mounths to understand

these theories. At the end of this paper, we will analyze some proposed improvements of

SVGD and try to explain the intuitions behind them, and see if they are practical or not.

2



2 Background on optimal transport theory

In this section, we will introduce the necessary mathematical background on optimal

transport theory and gradient flows in order to be able to describe and explain the theory

behind SVGD and all other results in this paper.

Notations

• For any Hilbert space, we denote by ⟨., .⟩H the inner product defined in H and by

∥.∥H its related norm.

• C0(X ) denotes the set of continuous functions from X to R vanishing at infinity.

• C1(X ,Y) denotes the set of continuously differentiable functions from X to Y .

• If ϕ ∈C1(X ,R), its gradiebt is denoted by ∇ϕ, and if ϕ ∈C1(X ,X ), its Jacobian is

denoted by Jϕ, which is a dxd matrix.

• For any dxd matrix A, we define its operator norm by:

∥|A∥| = sup {||Ax||, s.t| |x|| = 1}

• Pp(X ) is the set of probability measures µ over X with finite pth moment, which

means:
∫
||x||pdµ(x) <∞

• The image (or pushforward) measure of µ is denoted as T#µ

2.1 Gradient flows

Before dealing with gradient flows in general metric spaces, the best way to clarify

the situation is to start from the easiest case, i.e what happens in the Euclidean space

Rn. Most of what we will say stays true in an arbitrary Hilbert space, but we will stick

to the finite-dimensional case for simplicity.

Here, given a function F : Rn −→ R, smooth enough, and a point x0 ∈ Rn, a gradient

flow is just defined as a curve x(t), with starting point at t = 0 given by x0, which moves

by choosing at each instant of time the direction which makes the function F decrease as

much as possible. More precisely, we consider the solution of the Cauchy Problem:{
x′(t) = −∇F (x(t)) for t > 0

x(0) = x0

(2)

If x(t) is the solution of this Cauchy problem, then we can easily see that F (x(t)) is

decreasing in time, since we have, by applying the Chain rule:

dF (x(t))

dt
= ⟨∇F (x(t)), x′(t)⟩ = −∥∇F (x(t))∥2 < 0

3



In fact, and to make things more clear, let us consider this modelling: imagine that we

have a moving particle named X, and that its position at time t = n ∈ N is x(n) (x is

always the solution of (2)). Then we will simply observe that this particle follows the

direction that minimizes F. As seen in this figure:

Figure 1: Gradient flow visualization

Now we consider a more general ODE (Ordianry Differential Equation) which gener-

alizes equation (2): {
x′(t) = v(x(t)) for t > 0

x(0) = x0

(3)

Where v is called the flow. We know that if we want to transform this problem into an

algorithm, we need to discretize it. Therefore, we use the Euler discretization by choosing

a time step τ > 0, and considering the sequence of points (xτ
k)k defined by induction:{

xτ
k+1 = xτ

k + τv(xτ
k) for t > 0

xτ
0 = x0

(4)

We can interpret the sequence of points as the values of the curve x(t) at times t =

0, τ, 2τ, ..., kτ, ...

If v = −∇F , then the sequence (xτ
k)k converges to a (local) minimum of the function

F, and that minimum depends on the initialization x0. For example, if we consider a

function that has two local minimums, one at 0 and the other at 4, and we consider two

particles, one initialized at 1 and the other at 3, then the two particles converge to two

different minimums of F, as seen below:

4



Figure 2: Gradient algorithm applied on a non-convex function

Now that we have seen the definition of the gradient flows in Euclidean spaces, let us

move on to a more general case: the metric spaces and more specifically the Wasserstein

spaces (since we will use it to derive all our sampling algorithms).

2.2 Wasserstein spaces

We first recall the definition of a measure.

Definition 2.1 (Measure). Let Ω be a subset of Rd (also called the universe), and F be a

σ-field associated to Ω (which is a set containing subsets of Ω and stable by complementary

and by countable union and contains the empty set). A measure on the space (Ω,F) is a

map: µ : F −→ [0,+∞] such that:

• µ(∅) = 0

• For every countable set of pairwise disjoints events (An)n ∈ FN: µ(
⋃

n∈N An) =∑
n∈N µ(An)

And we say that this measure has a density f (with respect to the Lebesgue measure) if

and only if ∀A ∈ F :

µ(A) =

∫
A

f(x)dx

The main idea is to endow the space P(Ω) of probability measures on a domain

Ω ⊂ Rd with a distance (otherwise we won’t call it a metric space), and then deal with

gradient flows of suitable functionals on such metric spaces. Such a distance arises from

optimal transport theory (see [2] and [3]).

The motivation for the whole subject is the following problem proposed by Monge in 1781:

given two densities of mass f, g ≥ 0 on Rd with
∫
f =

∫
g = 1, find a map T : Rd −→ Rd

pushing the first one (f) onto the other, i.e such that for any Borel subset A ⊂ Rd:∫
A

f(x)dx =

∫
T (A)

g(x)dx (5)

5



And minimizing the quantity ∫
Rd

∥T (x)− x∥f(x)dx

This means that we have a collection of particles, distributed with density f, let’s say a

bunch of grains of sand disposed in an arbitrary way, and we want to move them so that

they arrange according to a new density g, for example a sand castle. This movement

has to be chosen so as to minimize the average displacement.

Figure 3: Illustration of Monge problem

One can remark that in this problem, we need a plan (T) that associates for each x a

single y, which means that No mass shall be split !. Thus, to guarantee the existence

of a solution to the Monge problem, it is important that measures enjoy some ”regularity”

property: at least no dirac masses!

This problem of Monge has stayed with no solution till the progress made in the 1940s

with the work by Kantorovich. In fact, Kantorovich has generalized this problem, and

introduced a function c(x, y) called the cost of the displacement, instead of the Euclidean

distance ∥x− y∥ used in Monge problem.

To introduce Kantorovich’s problem, let us start by defining the notion of couplings

in probability theory.

Definition 2.2 (Coupling). Let (X ,µ) and (Y,ν) be two probability spaces. Coupling µ

and ν means constructing two random variables X and Y on some probability space (Ω,P),
such that law(X) = µ and law(Y) = ν. The coupling (X,Y) is called a coupling of (µ,ν).

By abuse of language, the law of (X,Y) is also called a coupling of (µ,ν).

We denote by : Π(µ, ν) the set of couplings between µ and ν.

In other words, if we denote by π the law of (X,Y), then we have the following:

∀A ⊂ X , ∀B ⊂ Y , π(A x Y) = µ(A) and π(X x B) = ν(B)

Now we can state the formulation proposed by Kantorovich of the problem raised by

Monge: given two probability measures µ,π ∈ P(Rd), consider the problem:

min{
∫

c(x, y) dγ(x, y) : γ ∈ Π(µ, π)} (KP)

6



The minimizers of this problem are called optimal transport plans between µ and π. We

can observe that this problem quantifies the amount of work needed to move from a

measure to another. Then, if the cost function c is symmetric (i.e c(x, y) = c(y, x)), then

this quantity can define a distance between measures. Therefore, we can use for example

Euclidean distances as cost functions to obtain a symmetric Kantorovich problem. And

this is exactly what has been done to define the Wasserstein distances.

Definition 2.3 (Wasserstein distances). Consider p ≥ 1, and (X , d) a Polish space

(complete and separable). The p-Wasserstein distance between two measures µ and ν is:

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
||x− y||pdπ(x, y) = inf

(X,Y )∈Π(µ,ν)
E[∥X − Y ∥p] (6)

We have also the following classical property (which can be easily proved using

Holder’s inequality) : ∀p ≥ q ∀µ, π ∈ Pp

Wq(µ, π) ≤ Wp(µ, π)

And finally, we can now define the metric spaces Wp called Wasserstein spaces.

Definition 2.4 (Wasserstein spaces). When Ω ⊂ X is unbounded, then we need to restrict

our analysis to the following set of probabilities

Pp(Ω){µ ∈ P(Ω) :
∫
Ω

d(x, x0)
pdµ(x) < +∞})

where d is a distance in X, and x0 ∈ X. And then by endowing these spaces with the

p-Wasserstein distance, we get the Wasserstein spaces (Pp(Ω),Wp).

Gradient flows in the Wasserstein spaces

Now that we have defined the Wasserstein spaces, let us now state some important

properties of gradient flows in these spaces.

Consider a time-continuous random process (Xt)t and a family of measures (µt)t such

that: ∀t Xt ∼ µt (Xt has law µt). Consider that (Xt)t satisfies the following gradient

flow: {
Ẋt = vt(Xt) for t > 0

X0 ∼ µ0

(7)

We can understand this equation in a probabilistic way as follows: the law of Xt is evolv-

ing at each time step towards the law of X∞ with a ’velocity’ vt at time t.

We will show that these measures (µt)t satisfy a very important equation called the

the continuity equation and also known as the conservaion of mass equation which

is defined by:
∂µt

∂t
+∇.(µtvt) = 0

7



The meaning of this equation can be understood in terms of distributions:∫ T

0

∫
Rd

(
∂ϕ(x, t)

∂t
+ ⟨vt(x),∇xϕ(x, t)⟩)dµt(x) = 0

The continuity equation satisfied by the densities ρt of µt is:

∂ρt
∂t

+ div(ρtvt) = 0 (8)

We will use this one (8) all the time since we will consider that all the measures that we

deal with are of density. Therefore, from now on, we will use the same notation to

represent a measure and its density.(dµ(x)
dt

= µ(x))

We can prove this equation mathematically, but this could be boring. Therefore,

we propose to see this analogy in Physics that is more fun and a provides a better

understanding to this complex equation.

Proof of continuity equation: Analogy in Physics

We recall the Ostrogradsky’s theorem that we will use in our proof. Consider a volume

V enclosed in a surface S.

Figure 4: Volume V enclosed in a surface S

Consider a vector flow F⃗ . The Ostrogradsky’s theorem states that:∫ ∫
S

F⃗ .d⃗S =

∫ ∫ ∫
V

div(F⃗ )dV (9)

This theorem states that the integral of the divergence of a vector field F⃗ is equal to the

flow of this vector through the surface enclosing this volume.

Now, let us consider a fluid flow F⃗ that is escaping a Volume V enclosed by a surface S.

8



If we denote by ρ the volumic mass of this fluid (fluid density), then the total mass of

this fluid that is contained in V is:
∫ ∫ ∫

ρdV

The variation in time of this mass inside this volume is:

d

dt

∫ ∫ ∫
ρdV = −

∫ ∫
S

ρF⃗ .d⃗S

, and by applying Ostrogradsky’s theorem, we get that:

d

dt

∫ ∫ ∫
V

ρdV = −
∫ ∫ ∫

V

div(ρF⃗ )dV

Then, by changing the order of time derivation (dt) space integration (dV), we get that

for every Volume V: ∫ ∫ ∫
V

dρ

dt
+ div(ρF⃗ ) = 0

The we obtain that:
dρ

dt
+ div(ρF⃗ ) = 0

And the continuity equation is now proved. One can see the velocity field vt as a certain

’derivative’ of µt. (But this is not completely true ! Just to have an intuition about the

meaning of this vector). vt is not unique, but there exists a unique one that satisfies the

following property:

∥µ′∥(t) = lim
h→0

W2(µt+h, µt)

h
= ∥vt∥L2

Using this, we can now define the gradient of function F : P2(Rd) −→ R in the Wasser-

stein space, denoted ∇WF : Rd −→ Rd using the following chain rule:

dF(µt)

dt
= lim

h→0

F(µt+h)−F(µt)

h
= ⟨∇WF(µt), vt⟩L2(µt) (10)

From now on, our main tools to compute the Wasserstein gradient of a given function

are the above equation (10) and the continuity equation (8).

9



3 Langevin algorithm

Now let us go back to our main problem, which is sampling from a target density π. We

said that

π(x) ∝ exp(−F (x))

In this section, we will assume that F is convex. It is clear that if we consider a gradient

flow on F: x′(t) = −∇F (x(t)), and we discretize it :

xτ
k+1 = xτ

k − τ∇F (xτ
k)

then we will converge to the mode of π (point where π is maximal) (it is unique since

we assumed that F is convex), since π increases when F decreases. But, if we do so, we

will get a deterministic value x∞ = limn→+∞ xn, and then our final distribution will be a

Dirac on x∞ : δx∞ , which is not π !.

Therefore, the Langevin algorithm was introduced to solve this problem. It consists on

adding a noise term following a normal distribution N (0, 1) to give the previous gradient

flow algorithm some ”randomness”.

Then the Langevin Gradient flow is:(stochastic differential equation)

dXt = −∇F (Xt)dt+
√
2dWt (LGF)

Where Wt is the standard Wiener process characterized by the following properties:

• W0 = 0

• W has independant increments, that is: for every t > 0, the future increments

Wt+u −Wt for u ≥ 0 are independant of the past values Ws for s ≤ t.

• W has Gaussian increments: Wt+u −Wt ∼ N (0, u)

• Wt is continuous in t.

And its Euler-discretization gives us the following algorithm known as the Langevin

Monte Carlo algorithm:

Xk+1 = Xk − h∇F (Xk) +
√
2hξn (LMC)

Where (ξ)n is a sequence of standard normal vectors in Rd, and h is a step-size (that

should be small enough). Remark that (Xk)k is an homogeneous Markov Chain.

It is well-known that this stochastic differential equation (LGF) is inherently related to

the Fokker-Planck equation which have the form:

∂ρ

∂t
= div(∇F (x)ρ) + β−1∆ρ (FP)

Where β > 0 is a given constant. This gives us a differential equation verified by the

densities (ρt)t obtained by applying the Langevin gradient flow at each time t.

Remark that a sample of size N following the density π can be obtained using just

one particle with this algorithm, which is not necessarily the case for other sampling

algorithms including the SVGD method that we will introduce in the next section.

10



4 Stein Variational Gradient descent

To study the SVGD, it is important to introduce a new quantity that helps us understand

where SVGD comes from. This quantity is called the Kullback-Leibler divergence.

Definition 4.1 (KL divergence). The Kullback-Leibler divergence between two probability

measures µ and π is :

KL(µ|π) =
∫

log

(
dµ(x)

dπ(x)

)
dµ(x) (11)

This quantity is always well defined and takes values in [0,+∞], and it is finite if and

only if: µ << π.

The KL divergence quantifies ”how far the measures µ and π are from each other”.

Hence, our goal is to minimize it. And surprisingly, we have that nice property:

KL(µ, ν) = 0 ⇐⇒ µ = ν (12)

Hence, if we denote : F(µ) = KL(µ, π), then our optimization problem is the following:

min
µ∈P2(X )

F(µ) (13)

4.1 Wasserstein Gradient descent

Since we have an optimization problem of the form :

min
x∈X

f(x)

then we can think of using the gradient descent algorithm (discretization of the gradient

flow) to try to find a local minimum (and if we choose correctly the starting point, we

can find the global minimum if it exists).

And since we want to do a gradient descent on the KL divergence, then we need to

determine the gradient of the KL divergence in Wasserstein space. So let us determine

it.

Let vt a vector field associated to the family of densities (µt)t. We have that:

dF(µt)

dt
=

d

dt

∫
log

(µt

π

)
µt(x)dx =

∫
dµt(x)

dt
log

(
µt(x)

π(x)

)
+
dµt(x)

dt
dx =

∫
dµt(x)

dt
(log

(
µt(x)

π(x)

)
+1)dx

And using the continuity equation, we have that: dµt(x)
dt

= −div(µt(x)vt(x)) then we

replace in the last equation and we do an integration by parts:

dF(µt)

dt
=

∫
−div(µt(x)vt(x))(log

(
µt(x)

π(x)

)
+ 1)dx =

∫
⟨∇ log

(
µt(x)

π(x)

)
, vt(x)⟩µt(x)dx

Then :
dF(µt)

dt
= ⟨∇ log

(
µt(x)

π(x)

)
, vt⟩L2(µt)

11



Hence, we have proved that:

∇WF(µ) = ∇ log
(µ
π

)
(14)

The gradient flow problem associated to this our optimization problem is:

Ẋt = −∇WF(µt)(Xt) (WGF)

And if we express it in terms of measures by:

µk+1 = −∇ log
(µk

π

)
#
µk (15)

Where T#µ is called the pushforward measure and defined by: T#µ(A) = µ(T−1(A))

Where γ is the step size and I the identity map.

And the discretization of this gradient flow is equivalent to creating a random process

(X)n where Xn ∼ µn defined by :

Xn+1 = Xn − γ∇WF(µn)(Xn) (WGD)

Unfortunatly, this algorithm is not implementable in practice, since we need to know

the obtained probability distribution µn at each iteration n. Hence it is so hard to per-

form a gradient descent algorithm in this case. But since we want the general sampling

algorithm, we will try to find another approach to converge to a minimum of the KL

divergence.

Before introducing SVGD, which is close to the Wasserstein Gradient Descent, we will

prove a very nice property verified by a family of densities (ρt)t that follow the Wasserstein

gradient flow of the KL divergence (WGF).

Since we work with densities, then they verify the continuity equation which is given

by:
∂ρt
∂t

= div(ρt∇ log
(ρt
π

)
)

Since the vector field (flow) is: vt = −∇ log
(
ρt
π

)
We have that:

ρt∇ log
(ρt
π

)
= ρt(∇ log(ρt)−∇ log(π))

And we know that: ∇ log(π) = −∇F and that: ρ∇ log(ρ) = ∇ρ then if we replace in the

previous equation, we get that:

ρt∇ log
(ρt
π

)
= ρt∇F + ρt∇ log(ρt)

Then:

div(ρt∇ log
(ρt
π

)
) = div(ρt∇F ) + div(∇ρt) = div(ρt∇F ) + ∆ρt

12



Finally, we get that (ρt)t satisfy the equation:

∂ρt
∂t

= div(∇F (x)ρt) + ∆ρt (16)

Which is exactly the Fokker Planck equation (FP) with constant β = 1 !

Therefore, can we conclude from this last equation that the Wasserstein gradient descent

is equivalent to the Langevin algorithm !

4.2 SVGD

Kernel integral operator

Consider a positive semi-definite kernel k : X x X −→ R and H0 its corresponding RKHS

(Reproducing Kernel Hilbert Space). We denote by ϕ : X −→ H0 its feature map, which

is defined by : ϕ(x) = k(x, .). Moreover, k satisfies the reproducing property : ∀f ∈ H0,

f(x) = ⟨f, ϕ(x)⟩H0 .

The product space H := Hd
0 is also a RKHS endowed with the inner product : ∀f =

(f1, ..., fd) ∈ H and ∀g = (g1, ..., gd) ∈ H, ⟨f, g⟩H =
∑i=d

i=1⟨fi, gi⟩H0 .

One can notice that we have the following property:

Let µ ∈ P2(X ), the integral operator associated to kernel k and measure µ denoted

by Sµ : L2(µ) −→ H is:

Sµf =

∫
ϕ(x)f(x)dµ(x) =

∫
k(x, .)f(x)dµ(x) (17)

We make the key assumption that : ||ϕ(x)||2L2(µ) < +∞ for any probability measure

µ ∈ P2(X ); which implies that H ⊂ L2(µ).

⟨f, ιg⟩L2(µ) = ⟨Sµf, g⟩H (18)

(Sµ is the adjoint of the inclusion map ι)

We define : Pµ : L2(µ) −→ L2(µ) the operator : Pµ = ιSµ = ι◦Sµ, where ι : H −→ L2(µ)

the inclusion map. Then we can notice that Pµ differs from Sµ only on its range.

Algorithm

We recall that we want to obtain µ ∈ P2(X ) that minimizes : F(µ) = KL(µ, π).

The idea behind SVGD is to apply a gradient descent algorithm, but instead of applying

it on ∇W2F , we will perform it on Pµ∇W2F . Then we will examine the iterations of the

following algorithm :

µn+1 = (I − γPµn∇ log
(µn

π

)
)#µn (19)

Which we can write using random variables by :

13



Xn+1 = Xn − γPµn∇log(
µn

π
)(Xn) (SVGD)

This can be seen as the gradient of KL(.|π) under the inner product of H, since by

equation (18), we have ∀v ∈ H

⟨Sµ∇W2F(µ), v⟩H = ⟨∇W2F(µ), ιv⟩L2(µ) (20)

Therefore, if we compute the quantity Pµ∇ log(dµ
dπ
), which is the flow of SVGD, we

will find that (by simply applying an integration by parts):

Pµ∇ log

(
dµ

dπ

)
(y) = −

∫
[∇ log(π(x))k(x, y) +∇xk(x, y)]dµ(x) (21)

In the population limite (limite of infite number of particles), we can approximate the

density of the measure µn at time n by the empirical distribution of x1
n, ..., x

N
n of N

particles for N large, i.e:

µN
n =

1

N

i=N∑
i=1

δxi
n

(22)

And since we have that π(x) = C exp(−F (x)), then we can now implement the SVGD

algorithm as follows :

Algorithm 1 Stein Variational Gradient descent (Liu and Wang, 2016)

Require: a set x1
0, ..., x

N
0 ∈ X of N particles, a kernel k, and a step size γ > 0

1: converged ← False

2: while not converged do

3: for i = 1,2,..,N do

4: xi
n+1 = xi

n −
γ
N

∑i=N
i=1 k(xi

n, x
j
n)∇F (xj

n)−∇2k(x
i
n, x

j
n)

5: converged ← criterion

Where the variable converged is updated through a certain convergence criterion.

This is actually the general case, but in practice, we just iterate this algorithm for a

sufficiently large number n of iterations. (n is usually between 100 and 500).

In the updates of this algorithm, the term that contains the gradient of log(π(x))

drives the particles towards the high probability regions of π(x), while the term with

∇xj
k(xi, xj) acts as a repulsive force to push xi away from xj to avoid the particles to

collapse together.

The difference that we can see between SVGD and Langevin algorithm is that we need

14



a large number of particles (population limit) to perform SVGD, since all particles are

interacting with each other, whereas in Langevin, we can stick to just one particle !

However, it is proven that SVGD provides better results in practice than Langevin, and

uses less assumptions on F, for example, we do not assume that F is convex when apply-

ing SVGD, whereas if it is not the case in Langevin, then nothing guarantees us that it

will converge to the right distribution.

In order to get the intuition behind this difference, let us consider that we want to

approach a density π ∝ exp(−F ) where F is not convex, for example it has 2 local

minimums that are far enough from each other. If we use Langevin, then the convergence

of this algorithm will strongly depend on the initialization of our particle, because the

noise term ξn cannot make us go from one minimum to the other (since we assumed

that they are far enough), then Langevin will give us a really poor result especially if we

work with only one particle. However, SVGD can perform better in that case, since all

particles are interacting between them.

4.3 Convergence of SVGD

We can start this section by introducing the Log-Sobolev inequality:

Definition 4.2 (Log-Sobolev inequality (LSI)). The distribution π satisfies the LSI if

there exists λ > 0 such that for all µ ∈ P2(Rd) :

F(µ) ≤ 2

λ
∥∇WF(µ)∥2L2(µ) (LSI)

In general, if π satisfies the Log-Sobolev inequality (LSI), then we can prove that the

KL divergence decreases exponentially in time.

Since the Log-Sobolev is a strong assumption on π, we will introduce another convergence

result but under weaker assumption.

Convergence under Talagrand’s inequality T1

In this section, we will state a convergence criteria of SVGD when the target

distribution satisfies Talagrand’s inequality.

Definition 4.3 (Talagrand’s inequality Tp). Let p ≥ 1. The distribution (or more pre-

cisely the density) π satisfies the Talgrand’s inequality Tp if there exists λ > 0 such that

for all µ ∈ Pp, we have that:

Wp(µ, π) ≤
√

2F(µ)
λ

(Tp)

Then we can check that (T1) is weaker than LSI since we have that: LSI =⇒ T2 =⇒
T1.

We will use this inequality to recursively control the Kernelized Stein Discrepancy (KSD)

15



by the KL divergence along the iterations of the algorithm. We recall that the KSD is

also a statistical divergence between two probabilities.

It is proved, see Appendix and [4], that SVGD, in the population limit, converges weakly

and in 1-Wasserstein distance to the target distribution under T1 inequality and some

smoothness assumptions on the kernel and the potential F, but without convexity. We

encourage curious readers who want rigorous proof of this result to have a look at the

article of Adil Salim, Lukang Sun and Peter Richtarik [4].

16



5 From theory to practice

In this section, we will move to some practice and test SVGD on some distributions.

Here, we considered a set of 200 independent particles in dimension 1 (to do my first plot)

following a uniform law on [-10,10]. So we have : µ0 ∼ U [−10, 10]. We chose the target

distribution to be the normal distribution with mean 2 and variance 1 : π = N (2, 1), and

performed my algorithm on 100 iterations. We also used the Gaussian kernel for simplicity

(and also because it is well adapted for SVGD since it has some nice characteristics). And

here are the results:

(a) Initilization with uniform distribution (b) Output of SVGD for normal target

Figure 5: First simulation

Conclusion: It works really well on this example. Let us now test the Langevin

algorithm, and compare the results.

The 2D case

Now we test our algorithm with independent samples in dimension 2 (random

vectors) following the uniform law on [−10, 10]x[−10, 10]. The target distribution is

always the normal distribution with mean (2, 2)T and covariance matrix the identity

matrix in dimension 2:

(
1 0

0 1

)
.

Then, we obtained the following results:

17



(a) Initilization with uniform distribution in 2D (b) Output of SVGD for normal 2D target

Figure 6: Second simulation

Then, it works also in higher dimension.

Gaussian mixture

It is known, according to past experiments, that SVGD does not perform very well

on Gaussian mixtures, which means a sum of gaussian densities. So we decided to test

this hypothesis, and see if it is correct or not.

Therefore, we considered sampling from this gaussian mixture:

2

3
N (0, 1) +

1

3
N (7,

√
0.1)

We then plot this densities to see how it looks:

Figure 7: Gaussian mixture

18



We fit our algorithm on this density, and we obtain the following results:

(a) Estimated density of particles output by SVGD (b) Histogram of particles output by SVGD

Figure 8: SVGD applied on a Gaussian mixture

We conclude that SVGD succeeded in estimating both the means, but failed to esti-

mate the standard deviations and the modes of the two gaussians. However, it is quite

interesting to note that he succeded in figuring out that there are exactly two modes,

which is not an easy task, and a lot of other sampling algorithms fail to do so (like the

Langevin).

19



6 Improving SVGD

6.1 Improved SVGD with importance weights

In this section, we will see a a method that enhances SVGD via the introduction of

importance weights which leads to a new algorithm that Lukang Sun and Peter Richtarik

called β-SVGD (see [7]).

In this section, we will need to define a new quantity called the Stein Fisher information

IStein.

Definition 6.1 (Stein Fisher Information). Let ρ ∈ P2(Rd), and k a kernel. The Stein

Fisher information of ρ relative to π is defined by :

IStein(ρ, π) =

∫ ∫
k(x, y)⟨∇ log

(ρ
π

)
(x),∇ log

(ρ
π

)
(y)⟩dρ(x)dρ(y) (23)

As seen so far, the time complexity of SVGD depends on F(µ0) = KL(µ0, π), however,

for this new algorithm, the time for this flow to converge to the equilibrium distribution

π, quantified by the Stein Fisher information, depends on µ0 and π very weakly !

In fact, if we denote by (ρs)
s=t
s=0 the flow generated by SVGD, then we can show that the

Stein Fisher information satisfies the following inequality :

min
0≤s≤t

IStein(ρs, π) ≤
KL(ρ0, π)

t

Then, if our goal is to guarantee that : min0≤s≤t IStein(ρs, π) ≤ ϵ, it suffises to take :

t ≥ KL(ρ0, π)

ϵ

Unfortunatly, this bound depends on KL(ρ0, π) which can be sometimes very large !

Therefore, it can be so useful to develop an algorithm which convergence does not depend

on this quantity.

So this is what Lukang and Peter have done in their paper, by defining a new flow of the

family (ρt)t given by:

vβt = −( π(x)
ρt(x)

)β
∫

k(x, y)∇ log

(
ρt(y)

π(y)

)
dρt(y) (24)

Theorem 6.1 (Main result (complexity)). Along β- SVGD flow, we have :

min
t∈[0,T ]

IStein(ρt, π) ≤
1

T

∫ T

0

IStein(ρt, π)dt ≤


e
βDβ+1(ρ0,π)

Tβ(β+1)
if β > 1

KL(ρ,π)
T

if β = 0

− 1
Tβ(β+1)

if β ∈]− 1, 0[

(25)

Hence, the case that interests us is the third one, since we got a boundary that does

not depend on the measures, or we can say that it depends on them very weakly !

The intuition behind this flow is the following :

20



For β ∈]−1, 0[, the term ( π
ρt
)β can be seen as an acceleration factor in front of the SVGD

flow, hence, when this factor is big, that mean that x is close to the mass concentration

region of ρt but away from the one of π, therefore, this factor will enhance the vector field

at point x and force the mass around x to move faster towards π.(it is like a dynamic

learning rate !).

Now we discretize this flow, and we add importance weights to get the β-SVGD algo-

rithm.(In fact, the importance weights are here to represent the quantity π
ρn
)

Given N points (xi)
i=N
i=1 sampled from ρt, The Stein importance weight ŵ ∈ RN

+ is the

solution of the following constrained quadratic optimization problem :

argmin
w
{1
2
wTKπw, s.t

i=N∑
i=1

wi = N,wi ≥ 0} (26)

Where Kπ = {kπ(xi, xj)}Ni,j=1 and :

kπ(x, y) = k(x, y)⟨∇F (x),∇F (y)⟩−⟨∇F (x),∇yk(x, y)⟩−⟨∇F (y),∇xk(x, y)⟩+Tr(∇x∇yk(x, y))

(27)

This optimization problem can be solved efficiently and have the following solution for a

step-size r > 0 :

ws+1
i =

ws
i e

−r
∑N

j=1 kπ(xi,xj)w
s
j∑n

l=1w
s
l e

−r
∑N

j=1 kπ(xl,xj)ws
j

(28)

Finally, we can write our algorithm :

Algorithm 2 β- SVGD

Require: a set x0
1, ..., x

0
N ∈ X of N particles, a kernel k, and a step size γ > 0, initial

importance weight wi = 1
N
, iteration numbers n and m for particles update and

weights update respectively, and an inner loop number p.

1: for l = 0,1,...,n do

2: if l mod p ≡ 0 then

3: w0
i = wi, i=1,2,...,N

4: for s = 1,2,..,m do

5: update {ws+1
i }Ni=1 with the last equation

6: xl+1
i = xl

i + γ(max(Nwi, τ))
β
∑N

j=1[−k(xl
i, x

l
j)∇F (xj

n)−∇2k(x
l
i, x

l
j)]

where :

lim
N→∞

(max(Nwi, τ))
β = (

π

ρn
)β(xn) ∧

1

τβ

Results

It turns out that this algorithm in fact converges in smaller number of iterations to the

desired distribution.

21



Figure 9: Comparison between SVGD and -0.5-SVGD

Disadvantages

The algorithm is complex, and does so many computations !

6.2 Laplacian Adjusted Wasserstein Gradient Descent

In this section, we will see SVGD as the (kernelized) gradient flow of the chi-squared

divergence, rather than the KL divergence.

This perspective is fruitful in two ways :

• First, it uses a single integral operator Pπ, rather than a different one at each

iteration.

• Second, under the idealized choice Pπ = id, we show that this gradient flow con-

verges exponentially fast in KL divergence as soon as the target distribution π

satisfies a Poincaré inequality. The result here is even stronger, in fact we will

prove that the gradient flow forgets the initial distribution after a finite time that

is at most half of the Poincaré constant. This property is known by strong uniform

ergodicity.

So let us recall the definition of the chi-squared divergence and the Poincaré inequality:

Definition 6.2 (Chi-squared divergence). For two probability distributions ρ and µ on

Rd and ρ << µ, the chi-squared divergence is defined as :(when µ << π)

χ2(µ, π) =

∫
(
µ(x)

π(x)
− 1)2dπ(x) =

∫
µ(x)2

π(x)
dx− 1 (29)

It is shown that the Wasserstein gradient of the chi-squared divergence is :

(∇W2χ
2(.|π))(µ) = 2∇dµ

dπ
(30)

22



Definition 6.3 (Poincaré inequality). Let p ≥ 1. Let π ∈ Pp(Rd). We say that π satisfies

a Poincaré inequality with constant Cp if ∀f ∈ L2(π) locally Lipschitz :

∥f∥L2(π) ≤ CpEπ[∥∇f∥2] (31)

We prove also the following the following striking theoretical property : assuming that

the target distribution π satisfies a Poincaré inequality, LAWGD converges exponentially

fast, with no dependence on the Poincaré constant.

New flow, new algorithm

We recall that the family of measures (µt)t generated by SVGD satisfies the continuity

equation :
∂µt

∂t
= div(µtPµt∇ log

dµt

dπ
)

And we observe that :

Pµt∇ log dµt

dπ
=

∫
k(x, y)∇ log dµt

dπ
(y)dµt(y) =

∫
k(x, y)∇dµt

dπ
(y)dπ(y) = Pπ∇dµt

dπ
(x)

Then the continuous-dynamics of SVGD can be equivalently expressed as :

∂µt

∂t
= div(µtPπ∇

dµt

dπ
) (32)

And the Wasserstein gradient flow of the chi-squarred divergence is:

∂µt

∂t
= div(µt∇

dµt

dπ
) (33)

Comparing (33) and (32), we see that up to a factor of 2, SVGD can be understood

as the flow obtained by replacing the gradient of the chi-squared divergence ∇dµt

dπ
by

a ”kernelized” one : Pπ∇dµt

dπ
. And the formulation of SVGD in (32) involves a kernel

integral operator that does not evolve in time. And if we choose a kernel k for which

Pπ is the identity operator, then SVGD reduces to the gradient flow of the chi-squared

divergence. However, we observe that :

d

dt
KL(µt, π) = −Eπ⟨∇

dµt

dπ
, Pπ∇

dµt

dπ
⟩

And since we have that : ∀ f, g ∈ L2(π), locally Lipschitz:

Eπ⟨∇f,∇g⟩ = Eπ[fLg] (34)

where

L = −∆+ ⟨∇F,∇.⟩

23



is the inverse of the generator of the Langevin diffusion that has π as invariant measure.

Hence, we can look for k satisfying :

Pπ = L−1 (35)

To use the identity (34), by replacing the vector field −Pπ∇dµt

dπ
by the vector field :

−∇Pπ
dµt

dπ
. Then family of measures follow the equation :

∂µt

∂t
= div(µt∇Pπ

dµt

dπ
)

(LAWGD)

And since we have that :

−∇Pπ
dµt

dπ
(x) = −

∫
∇1k(x, y)

dµt

dπ
(y)dπ(y) = −

∫
∇1k(x, y)dµt(y)

And finally we obtain our algorithm in the population limit :

Algorithm 3 LAWGD

Require: a set x1
0, ..., x

N
0 ∈ X of N particles, a kernel kL that satisfies the condition (35)

1: for t = 0,1,...,T do

2: for i = 1,2,..,N do

3: xi
t+1 = xi

t − h
N

∑N
j=1∇1kL(x

i
t, x

j
t)

Convergence

The exponential convergence of the gradient flow of the chi-squared divergence is guar-

anteed if π satisfies a Poincaré inequality. And we have that :

Theorem 6.2 (Convergence). Assume that π satisfies a Poincaré inequality with constant

CP > 0 and let (µt)t denote the measures obtained by the chi-squared gradient flow.

Assume that χ2(µ0|π) <∞. Then :

KL(µt|π) ≤ KL(µ0|π)e
− 2t

CP ,∀t ≥ 0 (36)

So to obtain the exponential convergence of our algorithm, we just need to seek an

inequality of the form : Eπ⟨f, Pµf⟩ ≳ Eπ[∥f∥2]

24



Results

Figure 10: LAWGD and SVGD run with a constant step size for a mixture of three

gaussians

Disadvantages

• Implementing LAWGD in high dimensions is challenging, hence it not widely ap-

pliable in real life data since we work more often with many features.

• It is not valid for any reproducing kernel k.

6.3 Regularized SVGD

We have seen so far that SVGF (Stein Variational Gradient Flow) and WGF (Wasserstein

Gradient Flow) as close to each other, and differ only by an operator that we called Pµ.

So to quantify how SVGF is far from WGF, we can compute :

∥Pµ − I∥op = sup{∥Pµf − f∥ : ∥f∥L2(µ) = 1}

It is stated that, if ∇ log
(
µt

π

)
∈ adh(Ran)(Pµt), then it is easy to verify that when ν −→ 0

:

∥((1− ν)Pµt + νI)−1Pµt∇ log
(µt

π

)
−∇ log

(µt

π

)
∥ −→ 0

where ν ∈]0, 1] is called the regularization parameter.

Therefore, let us consider the flow proposed here in this section is:

vt = −((1− ν)Pµt + νI)−1Pµt∇ log
(µt

π

)
(37)

25



Let us denote by : Qµ = ((1− ν)Pµ + νI)−1 In the population limit, and by discretizing

the density µt =
1
N

∑N
i=1 δxj(t), where {xi(t)}Ni=1 is a set of N particles, we get the following

ODE :

dxi(t)

dt
= −Qµt(

1

N

N∑
i=1

−∇2k(xi(t), xj(t)) + k(xi(t), xj(t))∇F (xi(t))) (38)

Convergence

To study the convergence of this method, we introduce the Regularized Stein fisher In-

formation :

Definition 6.4 (Regularized Stein Fisher Information). For any probability measure ρ,

the regularized Stein Fisher information from ρ to π, denoted Iν,Stein(ρ|π) is defined as:

Iν,Stein(ρ|π) = ⟨Pρ∇ log
(ρ
π

)
, QρPρ∇ log

(ρ
π

)
⟩Hd (39)

This quantity is interesting in our case since we have the following result :

Theorem 6.3. For the solution (ρt) to the PDE (38), it holds that :

d

dt
KL(ρt|π) = −Iν,Stein(ρt, π)

Therefore, since the Stein Fisher information is a non-negative quantity then the KL-

divergence decreases in each iteration with magnitude Iν,Stein(ρn, π).

While the previous theorem was provided without any further assumptions on the target

density π ∈ P2(Rd), we provide now an improved convergence results of the R-SVGF

under the assumption that π satisfies the ”regularized Stein” Log-Sobolev inequality.

Indeed, we say that π satisfies the regularized Stein-LSI with constant λ > 0 if for all

µ ∈ P(Rd):

KL(µ|π) ≤ 1

2λ
Iν,Stein(µ|π) (40)

An advantage of the above condition is that as ν −→ 0 the regularized Stein-LSI becomes

equivalent to the standard LSI. Under the condition that the target density π satisfies

(40), and letting (ρt) be the solution to (38), it holds that:

KL(ρt|π) ≤ e−2λtKL(ρ0|π) (41)

Algorithm: Space-time discretization

In this section, we introduce a practical space-time discretization to the R-SVGF PDE.

In this algorithm, we consider (X i
n)

N
i=1 the position of N particles at the n-th step. We

let: Xn = (X1
n, ...., X

N
n )T . For all functions f: Rd −→ Rd, we define the operator Ln as:

Ln = (f(X1
n), ..., f(X

N
n ))T

26



The positions of the particles are then updated:

Xn+1 = Xn − hn+1(
1− νn+1

N
Kn + νn+1IN)

−1(
1

N
Kn(Ln∇F )− 1

N

N∑
j=1

Ln∇k(Xj
n, .)) (42)

where (hn)n is the sequence of step-sizes, Kn ∈ RNxN is the gram matrix defined as:

(Kn)i,j = k(X i
n, X

j
n).

27



7 Conclusion

In this paper, we presented the most important results on Stein Variational Gradi-

ent Descent. We started it by recalling some definitions and some key notions from the

optimal transport theory, and the theory of gradient flows. We introduced gradient flows

in the Euclidean spaces to have a better understanding of such equations and to get the

intuition behind them, then we moved to talk about gradient flows in the Wasserstein

spaces, which are metric spaces endowed with the Wassserstein distances. We proved the

classical continuity equation using a simple analogy in physics, and then we introduced

the notion of a gradient in the Wasserstein spaces. Thanks to the continuity equation,

we were able to prove all expressions of gradients in Wasserstein spaces, which are not

always easy to compute.

After this reminder, we moved on to talk about the Langevin algorithm, which is one

of the most popular algorithms for sampling from a target distribution. We have also

seen an interesting property about this algorithm which is the fact that it is related to a

well-known Physics equation called the Fokker-Planck equation.

Then we moved on to introduce the Wasserstein gradient descent, which is hard to com-

pute, but we found out that the family that it generates satisfies the Fokker-Planck

equation, hence we concluded that the Wasserstein Gradient descent algorithm is related

to Langevin algorithm.

And finally, we introduced the SVGD algorithm as a ”kernelized” Wasserstein gra-

dient flow on the KL divergence, and we proposed some interesting simulations of this

algorithm and presented its limits (Gaussian mixtures ...). And after that we proposed

some improvements of SVGD that can increase its speed of convergence or adapt it to

more difficult situation, like the Laplacian Adjusted Wasserstein gradient descent algo-

rithm that performs better on gaussian mixtures than SVGD.

Now using this knowledge, we can try to propose some other improvements of SVGD

by introducing a new parameter to the gradient flow that can be meaningful (like the

first and the third improvements), or maybe we can find some new properties of SVGD

by detailing the calculus more and more (as it was done on the second improvement).

28



8 Appendix: Convergence under T1

In this appendix, we provide only the key steps toward the proof of the convergence of

SVGD under T1 inequality. For a more precise proof, see [?]. Let us make the following

assumptions :

Assumptions

1. The Hessian HF , where F ∝ −log(π) is well-defined and that there exists an L ≥ 0

such that : ∥HF∥ ≤ L.

2. The target distribution π satisfies T1.

3. There exists B > 0 such that the inequalities :

∥ϕ(x)∥H0 ≤ B

and

∥∇ϕ(x)∥2H =
i=d∑
i=1

∥∂iϕ(x)∥2H0
≤ B2

Then, we can deduce the following results :

Proposition 8.1. Under the first assumption, there exists x∗ ∈ X such that : ∇F (x∗) =

0.

Proposition 8.2 (see C.Villani, 2008, Theorem 22.10 [?]). The target distribution π

satisfies T1 if and only if there exists a ∈ X and β > 0 such that :∫
exp

(
β∥x− a∥2

)
dπ(x) < +∞ (43)

A fundamental inequality

We know that the iterations of the SVGD are the following :

µn+1 = (I − γhµn)#µn

Where :

hµ =

∫
∇F (x)ϕ(x)−∇ϕ(x)dµ(x)

Let us state a general inequality satisfied by F for any update of the form :

µn+1 = (I − γg)µn

where g ∈ H.

Proposition 8.3. Let the first and last assumptions hold. Let α > 1 and choose γ > 0

such that γ∥g∥H ≤ α−1
αB

. Then :

F(µn+1) ≤ F(µn)− γ⟨hµn , g⟩+
γ2K

2
∥g∥2H (44)

where K = (α2 + L)B

29



This inequality is not a property of SVGD, but of the functional F . It plays the role

of Taylor inequality for F , where hµn is the Wasserstein gradient of F at µn under the

metric induced by H.
Applying recursively the Taylor inequality with g = hµn , we obtain the following descent

property for SVGD.

Theorem 8.1 (Descent property). Assume that all assumptions hold. Let α > 1. If:

γ ≤ (α− 1)(αB2(1 + ∥∇F (0)∥+ L

∫
∥x∥dπ(x) + L

√
2F(µ0)

λ
)) (45)

Or

γ ≤ (α− 1)(αB2(1 + L

∫
∥x− x∗∥dµ0(x) + 2L

√
2F(µ0)

λ
)) (46)

Then :

F(µn+1) ≤ F(µn)− γ(1− γB(α2 + L)

2
)KSD2(µn, π) (47)

Convergence

We can now show that the last theorem implies weak convergence and convergence in

W1.

Theorem 8.2 (Weak convergence). Assume that all stated assumptions hold. Let α > 1.

If γ < 2
B(α2+L)

, and γ satisfies either (19) or (20), then : µn =⇒ π and W1(µn, π) −→ 0.

Complexity

The convergence rate of the empirical mean of the iterates µn is O( 1
n
) in terms of the

squared KSD (Stein information matrix). This is proven by the following theorem which

is a corollary of Theorem 4.1.

Theorem 8.3 (Convergence rate). Let all above assumptions hold. Let α > 1, and γ

satisfies either (19) or (20), then :

IStein(µ̄n, π) ≤
2F(µ0)

nγ
(48)

Where : µ̄n = 1
n

∑k=n−1
k=0 µk

(to prove either at the end or here)

Theorem 8.4 (Complexity under Normal initialization). Let all above assumptions hold.

Let α > 1, and γ ≤ min( 2
B(α2+L)

, α−1
αK

), where :

K = B2(1 + 2L

√
2

λ
(F (x∗) +

d

2
log(

L

2π
)) +
√
Ld)

and if µ0 = N (x∗,
1
L
I), then :

n = Ω̃(
Ld3/2

λ1/2ϵ
)

iterations of SVGD suffice to output µ = µ̄n such that IStein(µ, π) ≤ ϵ.

30



References

[1] Qiang Liu and Dilin Wang, Stein Variational Gradient Descent: A General Pur-

pose Bayesian Inference Algorithm, arXiv, 2016, https://arxiv.org/abs/1608.04471

[2] Cédric Villani, Optimal transport, old and new, Springer, June 2008.

[3] Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Gradient flows in metric spaces

and in the space of probability measures, second edition, Birkhäuser, June 2008

[4] Adil Salim, Lukang Sun, Peter Richtarik, A Convergence Theory for SVGD in the

Population Limit under Talagrand’s Inequality T1, International Conference on Machine

Learning, 2022, https://proceedings.mlr.press/v162/salim22a.html

[5] Filippo Santambrogio, Optimal Transport for applied mathematicians, calculus of

variations, PDEs and Modelling, Birkhäuser, June 2008

[6] Anna Korba, Adil Salim, Michael Arbel, Giulia Luise and Arthur Gretton, A Non-

Asymptotic Analysis for Stein Variational Gradient Descent, arXiv, 2022

[7] Lukang Sun, Peter Richtárik, Improved Stein Variational Gradient Descent With

Importance Weights, arXiv, 21 Nov 2022, https://arxiv.org/abs/2210.00462

[8] Sinho Chewi, Thibaut Le Gouic, Chen Lu, Tyler Maunu and Philippe Rigollet,

SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence, NeurIPS,

2020, https://proceedings.neurips.cc/paper/2020/hash/16f8e136ee5693823268874e58795216-

Abstract.html

[9] Ye He, Krishnakumar Balasubramanian, Bharath K. Sriperumbudur and Jianfeng

Lu, Regularized Stein Variational Gradient Flow, arXiv, 15 Nov 2022, https://arxiv.org/abs/2211.07861

[10] Richard Jordan, David Kinderlehrer and Felix Otto, The Variational Formula-

tion of the Fokker-Planck Equation, Society of industrial and Applied Mathematics, 1999,

https://epubs.siam.org/doi/abs/10.1137/S0036141096303359

31


	Introduction
	Background on optimal transport theory
	Gradient flows
	Wasserstein spaces

	Langevin algorithm
	Stein Variational Gradient descent
	Wasserstein Gradient descent
	SVGD
	Convergence of SVGD

	From theory to practice
	Improving SVGD
	Improved SVGD with importance weights
	Laplacian Adjusted Wasserstein Gradient Descent
	Regularized SVGD

	Conclusion
	Appendix: Convergence under T1

