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Abstract

Bayesian inference problems, Monte Carlo estimators and a lot of tasks in Ma-

chine learning require sampling from probability distributions. One of the methods

that was recently discovered by Qiang Liu and Dilin Wang in 2016 is Stein Varia-

tional Gradient Descent (SVGD), which is a deterministic algorithm for sampling

from a target density π known up to a multiplicative constant, i.e π ∝ exp{−F}.
In this paper, we will recall the properties of this algorithm, then we will move on

to prove the weak convergence of the generated process to the target distribution

in the population limit under some non-restrictive conditions, and finally we will

propose some new algorithms, we called one of them the Stochastic SVGD, that

can increase the performances of ordinary SVGD and most importantly enables us

to simulate correctly from complex distributions such as Gaussion mixtures, where

most of known algorithms fail to sample from.
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1 Introduction

Sampling and Variational Inference are the most common paradigms for ex-

tracting information from a target distribution arising in many Machine learning tasks,

including Bayesian Machine learning, where the distribution of interest is the posterior

distribution of the parameters. In most of the time, the posterior distribution is gener-

ally difficult to compute due to the presence of an intractable integral, and often takes

this form

π(x) ∝ e−F (x)

Where F : Rd −→ R is a function called the potential function.
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In this context, many algorithms were developed to solve this problem. Their appli-

cations are so vast and basically touch any current domain of research and industry. For

example, biologists need such algorithms to simulate for example the propagation of an

epidemic knowing its law, and researchers in finance do need sampling as well to study

the behaviour of some processes or to apply Monte-Carlo estimations, and so on. The

most common sampling algorithms are Markov Chain Monte Carlo (MCMC) methods,

which generate a Markov Chain process that has the target probability π as a stationary

distribution. And one of the most popular MCMC method is the Langevin algorithm,

which performs a gradient descent algorithm on the Kullback-Leibler divergence in the

Wasserstein space (see Otto et al. [1]). This algorithm is so powerful, but requires

the potential F to be convex. If it is the case, then we are sure that this algorithm

will converge to our target distribution since the Kullback-Leibler divergence will be

geodesically convex, and therefore by performing a gradient descent on it, we are sure

to converge to its global minimum. We recall that the Kullback-Leibler divergence has

this nice property: ∀µ ∈ P2(Rd)

KL(µ|π) ≥ 0

And that :

KL(µ|π) = 0 ⇐⇒ µ = π

Therefore, the global minimum of the KL divergence is achieved in π.

Unfortunatly, it is not guaranteed that this algorithm converges to π when F is not

convex ! In fact, if π is a Gaussian mixture, then minimizing the KL divergence will not

lead to this distribution. This is illustrated in the following figure:

Figure 1: Minimizing the KL divergence (Deep Learning: Goodfellow et al.)

Recently in 2016, Qiang Liu and Dilin Wang have introduced a new particle

based optimisation algorithm that they call Stein Variational Gradient Descent (SVGD)

(see [10]). It uses a set of interacting particles to approximate the target distribution,

and applies iteratively to these particles a form of gradient descent of the relative en-
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tropy, where the descent direction is restricted to belong to a unit ball in a Reproducing

Kernel Hilbert space (RKHS). Unlike typical Monte Carlo algorithms that rely on ran-

domness for approximation, SVGD constructs a set of points (or particles) by iteratively

applying deterministic updates that is constructed to optimally decrease the KL diver-

gence to the target distribution at each iteration.

The empirical performance of this algorithm and its variants have been largely demon-

strated in various tasks in machine learning such as Bayesian inference, learning deep

probabilistic models, or reinforcement learning. In the population limit (limit of infinite

particles), the algorithm is known to converge to the target distribution under appro-

priate growth assumptions on the potential.

The literature on theoretical properties of SVGD is scarce compared to that of Langevin

algorithm, and limited to a few recent works. Many improvements on the SVGD algo-

rithm have been recently discovered, but they are still poor, hard to implement, and

sometimes limit the use of the algorithm to some really specific target densities.

In this article, we will prove the convergence of SVGD in the population limit using a

property of the Kernelized Stein Discrepancy that we will detail later, and then we will

propose some new algorithms that we invented and that seem to improve the perfor-

mances of SVGD at least in terms of complexity.

Notations

• For any Hilbert space, we denote by ⟨., .⟩H the inner product defined in H and by

∥.∥H its related norm.

• C0(X ) denotes the set of continuous functions from X to R vanishing at infinity.

• C1(X ,Y) denotes the set of continuously differentiable functions from X to Y .

• If ϕ ∈C1(X ,R), its gradient is denoted by ∇ϕ, and if ϕ ∈C1(X ,X ), its Jacobian

is denoted by Jϕ, which is a d x d matrix.

• For any matrix A ∈ Md,d(R) , we define its operator norm by:

∥|A∥| = sup {||Ax||, s.t| |x|| = 1}

• Pp(X ) is the set of probability measures µ over X with finite pth moment, which

means:
∫
||x||pdµ(x) <∞

• The image (or pushforward) measure of µ is denoted as T#µ

• Sometimes in this article, we will confound measure and density, for example µ

can sometimes refer to the measure, and sometimes to its density.
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2 Construction of SVGD

Before tackling the proof of the convergence of SVGD, let us recall some basics proper-

ties about this algorithm.

We recall here the definition of the Kullback-Leibler divergence, which measures how

two probability distributions are far from each other. However, it cannot be considered

as a distance between measures since it is not symmetric. This quantity will be very

useful along our study.

Definition 2.1 (KL divergence). The Kullback-Leibler divergence between two proba-

bility measures µ and π is :

KL(µ|π) =
∫

log

(
µ(x)

π(x)

)
µ(x)dx (1)

This quantity is always well defined and takes values in [0,+∞], and if: µ << π, then

it is finite.

Now, let π be a probability measure of interest with a positive, (weakly) differentiable

density on a open set X ⊂ Rd. Our goal is to approximate π with a set of particles

(xi)
n
i=1 whose empirical measure µ̂n(x) = 1

n

∑n
i=1 δxi(x)dx weakly converges to π as

n −→ +∞.

To achieve this, we initialize the particles (xi0)
N
i=1 with some distribution µ0, and update

them via the map:

T (x) = x+ ϵϕ(x)

where ϵ is a small step size, and ϕ(x) is a velocity field. Updating the particles with the

map T means that we apply the induction relation:

∀n ∈ N, ∀i ∈ {1, ..., N} xin+1 = T (xin)

We want to chose ϕ in a way to maximally decrease the KL divergence between the

particle distribution µ̂n and the target measure. To do so, we will minimize the direc-

tional derivative of the KL divergence between T#µ and π in direction ϕ, where µ is an

arbitrary measure in P2(Rd).

Definition 2.2 (Directional derivative). The directional derivative of a function f :

Rd −→ R in direction u (a unit vector) is the slope of the function in this direction. In

other words, it is the derivative of the function f(x+ ϵu) with respect to ϵ, evaluated at

ϵ = 0. Using the chain rule, we can easily find that:

∂

∂ϵ
f(x+ ϵu)|ϵ=0 = ⟨u,∇xf(x)⟩
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To minimize f, we would like to find the direction in which f decreases the fastest. We

can do this using the directional derivative, and then solving the following optimization

problem:

min
u,∥u∥2=1

⟨u,∇xf(x)⟩ (2)

If the norm is the L2 norm, then we have a closed form solution. To exhibit it, let

us examine the case of u ∈ R2 . It is well known that the problem (2) is equivalent to:

min
u,∥u∥22=1

⟨u,∇xf(x)⟩ = min
u,∥u∥22=1

∥u∥2∥∇xf(x)∥2 cos(θ)

where θ is the angle between u and the gradient. Using the fact that ∥u∥2 = 1 and

ignoring the factors that do not depend on u, the problem simplifies to

min
u,∥u∥2=1

cos(θ)

And this is minimized when u points in the opposite direction of the gradient (to have

cos(θ) = −1). Hence the solution u is proportional to −∇xf(x). And this is how we got

the gradient descent algorithms !

One can generalize this result into the space L2, and prove that the solution to the

optimization problem (2) is:

u = − ∇xf(x)

∥∇xf(x)∥L2

And to make this solution easier and practical, we just take:

u = −∇xf(x) (3)

This is known as the method of steepest descent or gradient descent, which proposes

to do the updates:

T (x) = x− ϵ∇xf(x)

We will use this directional derivative to construct our main optimization problem.

Now we will introduce another notion that will be useful in our analysis.

Definition 2.3 (The pushforward measure). Let Y be a real random vector following

a distribution µ. Let T be a mapping T : Rd −→ Rd, and Z = T (Y ). Then Z has

distribution T#µ called the pushforward distribution of µ, or the the image measure of

µ by T , which is defined by:

∀A ∈ B(Rd) T#µ(A) = µ(T−1(A))

Now let us formalize our problem. Let X ∼ µ, our goal is to apply a transformation

T (x) = x+ϵϕ(x) on X in order to ”move” the distribution µ towards the target π. Then,

one way to do that is by determining the velocity field ϕ that maximizes the decrease of
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the Kullback-Leibler (KL) divergence between T#µ and π. This is equivalent to finding

the direction ϕ in which the KL decreases the fastest. Hence, we can use the directional

derivative, and this leads us to the following optimization problem (see (2)):

max
ϕ∈H

{
− d

dϵ
KL(T#µ|π)|ϵ=0, s.t ∥ϕ∥H ≤ 1

}
(4)

Using the chain rule, and that the gradient of the KL divergence in the Wasserstein

space is: ∇WKL(µ|π) = ∇ log
(µ
π

)
, we obtain that (see Appendix for the proof):

d

dϵ
KL(T#µ|π)|ϵ=0 =

∫
⟨log(π(x)), ϕ(x)⟩+ div(ϕ(x))dµ(x) = Eµ[Sπϕ] (5)

Where

Sπϕ(x) = ⟨log(π(x)), ϕ(x)⟩+ div(ϕ(x)) (6)

Sπ is a linear operator, called the Stein operator, that maps a vector-valued function ϕ

to a scalar-valued function Sπϕ. Therefore, the optimization (4) becomes:

SD(µ|π) = max
ϕ∈H

{Eµ[Sπϕ] s.t ∥ϕ∥H ≤ 1} (7)

This quantity is called the Stein discrepancy, which provides a discrepancy measure

between the measures µ and π since:

SD(µ|π) > 0 if µ ̸= π

And

SD(µ|π) = 0 ⇐⇒ µ = π

Remark that we want to find a maximum ϕ in a certain space H. We did not precise

yet the nature of this space. We will see that the choice of this space is what makes the

difference between Langevin algorithm and SVGD.

When H = L2
µ(Rd), then the optimal velocity field ϕ∗ that satisfies the optimization

problem (7) is, as we have shown in (3) ϕ∗ = −∇ log
(µ
π

)
, which is the gradient of the

KL divergence in the Wasserstein space W2(Rd). Hence, the best map T to apply on µ

(or equivalently the random vector Y) in order to maximize the decrease of the KL is:

T (x) = x− ϵ∇ log

(
µ(x)

π(x)

)
And this is exactly the gradient descent mapping on the Kullback-Leibler divergence.

Applying this mapping many times generates a Markov Chain (Xn)n where X0 ∼ µ0,

and

Xn+1 = T (Xn) = Xn − ϵ∇ log

(
µn(Xn)

π(Xn)

)
(WGD)
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This algorithm is called Wasserstein Gradient descent (WGD). This algorithm is not

implementable in practice, since it requires knowing the distributions (µn)n≥1, which is

a very hard task. However, Otto et al.[1] showed that the Langevin algorithm does a

gradient descent on the KL divergence, hence Langevin is actually WGD. We recall that

Langevin algorithm is the following:

Xn+1 = Xn − ϵ∇F (Xn) +
√
2ϵξn (LA)

where ϵ > 0 is a step-size (small), and ξn is a standard normal variable, i.e ξn ∼ N (0, 1).

However, we said in the introduction that this algorithm is not so efficient unless F

is convex.

Now let us take an interesting case of the space H which will lead us to know the origin

of SVGD.

Let K be a reproducing kernel, and H its associated Reproducing Kernel Hilbert Space

(RKHS), which means that if f ∈ H then ∃α1, ..., αn ∈ R and ∃x1, ..., xn ∈ Rd such that:

∀x ∈ Rd f(x) =
n∑
i=1

αiK(xi, x)

Let us go back now to our optimization problem (7). If we take now H a RKHS,

then the optimization leads to a closed form solution. In fact, it can be shown that the

optimal solution of (7) is :

ϕ∗µ,π(y) ∝ EX∼µ[Sπ ⊗K(X, y)] (8)

Where

Sπ ⊗K(X, y) := −∇F (X)K(X, y) +∇1K(X, y)

and ∇1 means the gradient with respect to the first argument. Hence, we obtained

another velocity field by restrictingH to a RKHS, and in that case, the Stein Discrepancy

(SD) becomes a Kernelized Stein Discrepancy (KSD):

KSD(µ|π) =
√

EX∼µ[Sπϕ ∗µ,π (X)] = ∥ϕ∗µ,π∥H (KSD)

And we have that:
d

dϵ
KL(T#µ|π)|ϵ=0 = −KSD(µ|π)2 (9)

This last inequality will be useful in the next section where we will deal with convergence.

We now have a new velocity field ϕ∗µ,π which we will adopt in our mapping

T (x) = x+ ϵϕ∗µ,π(x)
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to construct finally an algorithm doing the updates: Xn+1 = T (Xn) which will be called

SVGD.

Algorithm 1 Stein Variational Gradient descent (Liu and Wang, 2016)

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: Xi
n+1 = Xi

n − ϵ
N

∑j=N
j=1 K(Xj

n, Xi
n)∇F (X

j
n)−∇1K(Xj

n, Xi
n)

Remark that to get this algorithm, we approximated the expectation Eµ with its

Monte-Carlo estimator.

3 Convergence of SVGD in the population limit

Now that we recalled the construction of SVGD, let us now study its convergence,

and provide a clear proof of it.

Denote by µ̂nl the empirical measure of the SVGD with n particles in time step l. We

will study both convergences when l → +∞ and when n → +∞. In fact we will show

that : liml→+∞ limn→+∞ µ̂nl = π under some conditions. We want to precise as well

that the order of the limits cannot be inverted (according to our current knowledge), we

will talk about this specific point at the end of this section.

First we will assume that we have the weak convergence of the empirical measures µ̂nl to

µl the continuous ones when n→ +∞ (it was also shown in Liu 2017 [3]). This is called

the population limit regime, which is the limit of infinite particles. So let us prove that

µl converges weakly to π as l −→ +∞.

Let us define the optimal transform Tµ,π(x) = x+ ϵϕ∗µ,π(x) with ϕ
∗
µ,π defined in (8). We

know that SVGD performs the following updates:

Xn+1 = Xn + ϵϕ∗µn,π(Xn)

This is the Euler discretization of the following gradient flow in the continuous time

limit (ϵ −→ 0)
dXt

dt
= ϕ∗µt,π(Xt) (SVGF)

If we denote (µt)t the continuous time measures obtained by applying SVGD, i.eXt ∼ µt,

this means that they satisfy the following continuity equation:

∂µt
∂t

+ div(ϕ∗µt,πµt) = 0 (10)
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Using the equation (9), we have that:

d

dt
KL(µt|π) = −KSD(µt|π)2 (11)

let us recall the definition of the weak (or narrow) convergence.

Definition 3.1 (Weak convergence). We say that a sequence of measures (µn)n in

P2(Rd) converges weakly to a probability measure µ if and only if for all bounded con-

tinuous functions f , we have when n→ +∞ :∫
f(x)µn(x)dx→

∫
f(x)µ(x)dx

In this case, we write that: µn =⇒ µ

Korba et al.[2] showed that under an inequality called the Stein Log-Sobolev in-

equality, we have the convergence of SVGD in the population limit with an exponential

rate. However, the problem with this inequality is that it is almost never satisfied by a

distribution π. Hence, we cannot use this proof on ordinary examples.

Convergence in population limit

As we said, the Stein LSI is not satisfied by most of the distributions, so it is not fair

to prove the convergence of SVGD just by using it. This is why we will now propose

another proof of convergence in the infinite particle regime (population limit) that does

not require strong assumptions.

Definition 3.2 (Tightness). A family of probability measures (µt)t∈X is tight if and

only if for all ϵ > 0, there exists a compact set Kϵ ⊂ B(Rd) such that:

sup
t∈X

µt(Kϵ) ≥ 1− ϵ

which means that for an arbitrary small ϵ, we can find a compact set that contains almost

all the mass associated with the family (µt)t.

In discrete time, we say that the sequence of measures (µn)n is tight if and only if for

all ϵ > 0, there exists a compact set Kϵ ⊂ B(Rd) such that:

sup
n∈N

µn(Kϵ) ≥ 1− ϵ

Now we will state our main theorem in this article.

Theorem 1 (Convergence in population limit). Let (µn)n the sequence of measures

associated to the particles generated by SVGD at each time step n ∈ N. If F is coercive
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and KL(µ0|π) < +∞, then µn converges weakly to π, i.e

µn =⇒ π (12)

Before going through the proof, let us recall some basic properties in asymptotic

statistics.

Lemma 2. Let (µn)n be a sequence of measures, and F : Rd −→ R be a coercive

function, i.e

lim
∥x∥→+∞

F (x) = +∞

Assume that

sup
n

∫
F (x)µn(x)dx < +∞ (13)

Then the family (µn)n is tight, i.e ∀ϵ > 0 ∃Kϵ compact such that:

sup
n
µn(Kϵ) ≥ 1− ϵ (14)

Proof of lemma. If we take F (x) = ∥x∥, then F is clearly coercive. Let ∀n ∈ N Xn ∼ µn

(it is always easier to work with random vectors rather than their measures). Our main

hypothesis states that supn E(∥Xn∥) < +∞.

We have by Markov inequality:

∀R ∈ [0,+∞[, P[∥Xn∥] > R] ≤ E[∥Xn∥]
R

≤ sup
n

E[∥Xn∥]
R

Hence if we take Rϵ = supn
E[∥Xn∥]

ϵ we then have Kϵ = B(0d, Rϵ) = {x s.t ∥x∥ ≤ Rϵ}
is a compact set (the closed ball of center 0d and radius Rϵ), and

µn(Kϵ) = P[∥Xn∥ ≤ Rϵ] ≥ 1− ϵ

And now we can easily generalize this result to any coercive function F by taking the

compact Kϵ = {x s.t F (x) ≤ Rϵ} where Rϵ = supn
E[F (Xn)]

ϵ

And then we need other lemmas to finally be able to prove the convergence theorem.

Lemma 3 (Prokhorov). A sequence of probability measures is tight if and only if every

subsequence of (µn)n admits a further subsequence which converges weakly.

Lemma 4 (Narrow convergence). Let (µn)n be a sequence of probability measures in

P2(Rd). Let µ ∈ P2(Rd). Assume that every narrowly convergent subsequence (µϕ(n))n

of (µn)n has µ as a limit. Then:

µn =⇒ µ
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Lemma 5 (Weak continuity of KSD). Let (µn)n be a sequence of probability measures

on P2(Rd). We have:

lim
n→+∞

KSD(µn|π) = 0 ⇐⇒ µn =⇒ π (15)

The proof of this last lemma is provided in Gorham et al. [7]. Now let us prove our

convergence theorem

Proof of theorem. Let (µt)t a family of probability measures associated with the (SVGF).

We have shown that (see (11)):

d

dt
KL(µt|π) = −KSD(µt|π)2

then the function t 7−→ KL(µt|π) is non-increasing, then

∀t ∈ R+, KL(µt|π) ≤ KL(µ0|π) < +∞

Let us consider a time discretization (tn)n which is simply an increasing sequence in R+

(tn+1 > tn and limn→+∞ tn = +∞ ).

We have:

KL(µtn |π) =
∫

log

(
µtn(x)

π(x)

)
µtn(x)dx =

∫
F (x)µtn(x)dx+

∫
log(µtn(x))µtn(x)dx

Then ∀n ∈ N,
∫
F (x)µtn(x)dx < +∞ , then supn

∫
F (x)µtn(x)dx < +∞ , then by the

Lemma 2, we conclude that (µtn)n is tight. Let ϕ : N −→ N an increasing function such

that (µtϕ(n))n converges narrowly (weakly) to a measure µ∗. This measure exists by the

Prokhorov’s theorem (see Lemma 3). Then µtϕ(n) =⇒ µ∗.

In another hand, we have that

KL(µt|π)−KL(µ0|π) = −
∫ t

0
KSD(µx|π)dx

Hence, since the t 7−→ KL(µt|π) is non-increasing, and that KL(µt|π) ≥ 0, then the

difference KL(µt|π)−KL(µ0|π) is finite for all t ∈ R+.

Then the integral
∫ t
0 KSD(µx|π)dx is also finite. This stays true when t→ +∞, hence

lim inftKSD(µt|π)2 = 0, then by definition of the limit inferior, which is the smallest

accumulation point of any sequence of (µn)n, there exists a sequence of time discretiza-

tion (sn)n such that limn→+∞KSD(µsn |π) = 0

Then by Lemma 5, we get that

µsn =⇒ π

Then, for every increasing function ψ : N −→ N, we have that µsψ(n)
=⇒ π .
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Now we can construct a function ψ such that: ∀n ∈ N

sψ(n) ≤ tϕ(n) ≤ sψ(n+1)

And then we get that:

0 ≤ KL(µtϕ(n) |π) ≤ KL(µsψ(n)
|π)

When n goes to +∞, we have that KL(µsψ(n)
|π) → 0 because µsψ(n)

=⇒ π, and then

we get that:

KL(µtϕ(n) |π) → 0

And then equivalently,

µtϕ(n) =⇒ π

And since (µtϕ(n)) converges to µ
∗, we get then µ∗ = π

Therefore, we have shown that every convergent subsequence (µtϕ(n))n of (µtn)n con-

verges to π. Therefore, we finally conclude by Lemma 4 that ∀(tn)n ∈ RN

µtn =⇒ π

If we consider (tn)n the discretization of the SVGD algorithm, then we have shown

the convergence of this algorithm in the population limit (limit of infinite number of

particles).

Comment on the convergence result

To the best of our knowledge, this proof of convergence in the population limit is the

one with the weaker assumptions. In fact, other proofs often require strong assumptions

like some inequalities that are not always satisfied.

Hence, we have shown that:

lim
l→+∞

lim
n→+∞

µ̂nl = π (16)

Which means that, in the case of the infinite number of particles, we have the

convergence of their resulting distribution. However, it was not proved until now that

we will always have the convergence of SVGD if we change the order of the limits in

(16), which means that we don’t have a theoretical proof of convergence of SVGD in

the finite number of particles. It was shown by experience that SVGD gives very good

approximations of the target distribution π in the finite number of particles, so in the

near future, we should be able to find such a proof. This was one of the missions that

we would like to have tackled in this project, but we did not have enough time for it.
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4 New algorithms

It was proved in Liu 2017 [3] that SVGD performs a gradient flow on the Kullback-

Leibler divergence, and of course not in the Wasserstein spaceW2(Rd) (this is Langevin),
but in a new space with a specific structure called H−Wasserstein space, where H is

the RKHS associated with the chosen reproducing kernel K.

So, if we write gradH the gradient in this space, then it was proved that the optimal

velocity field put in this term div(ϕ∗µ,π.µ) defined in (8) is actually the gradient of the

Kullback-Leibler divergence in this H−Wasserstein space, which means that is satisfies

the following identity:

div(ϕ∗µ,π.µt) = gradHKL(µt|π)

And therefore, the continuity equation can be written as follows:

∂µt
∂t

= −gradHKL(µt|π) (17)

This result is interesting because it tells us that SVGD is actually a gradient flow

on a functional (the KL divergence). So SVGD behaves like Langevin but in another

space, an unusual space, which properties are introduced in Liu [3].

We will use the above equation (17) to analyze the behaviour of some new algorithms

that we will propose in the following paragraphs. Indeed, the continuity equation helps

us see the evolution of the intermediate measures (µt)t generated throughout the exe-

cution of an algorithm.

4.1 Adding noise to SVGD

We know that SVGD is a fully deterministic algorithm and does not use any

randomness (apart from generating the very first samples from µ0). So what if we add

some noise to this algorithm ? Which means, (if we get inspired by Langevin) we can

introduce this new algorithm that does noisy updates:

Algorithm 2 Noisy SVGD

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: Xi
n+1 = Xi

n − ϵ
N

∑j=N
j=1 K(Xj

n, Xi
n)∇F (X

j
n)−∇1K(Xj

n, Xi
n) +Bi

n

Where Bi
n is some noise at step n. Remark that if we take Bi

n =
√
2ϵξn (the

same noise as of Langevin), where ξn ∼ N (0, 1) then this will lead us to the following

continuity equation:
∂µt
∂t

= −gradHKL(µt|π) + ∆µt (18)
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This means that we do not perform a gradient descent on the KL divergence in the

H-Wasserstein space anymore (because we have the term ∆µt in (18)). However, it

remains of great interest to study the theoretical properties of this algorithm. Indeed,

by varying the type of noise Bi
n that we choose at each iteration, we can find more robust

algorithms that can simulate many hard distributions. For example, let us test this last

algorithm to generate N = 100 random variables of distribution N (2, 1) and visualize

the results: We start by generating 100 random variable of distribution U([−5, 5]), and

then we apply each algorithm on these variables:

Figure 2: Ordinary SVGD

Figure 3: Noisy SVGD

Observing the last figures, it is cristal clear that the ordinary SVGD performs much

better than the noisy one for this distribution. And this was actually predictable, in

fact, we know that the continuity equation of the ordinary SVGD is given by:(as we said

14



in (17))
∂µt
∂t

= −gradHKL(µt|π)

Then, it performs a gradient descent on the KL divergence, and since the potential F

for the Gaussian N (2, 1) is convex (it is equal to: F (x) = (x−2)2

2 ), then doing a gradient

descent of the KL divergence will lead us to its global minimum !

Hence, in this case, the use of ordinary SVGD or even Langevin leads to very good

results, but the use of noisy SVGD changes the limit of the empirical measures, and

then it is not equal to π anymore.

To verify that, and since normal distributions are totally determined by their mean

and variance, then we can use their estimators to compute an approximation of these

quantities. Let (Xi)
N
i=1 be the output of SVGD, we recall that the estimator of the

mean, denoted m̂, is simply the Monte-Carlo estimator of an expectation (the empirical

mean), and the unbiased estimator of the variance, denoted by σ̂2, are given by:

m̂ =
1

N

N∑
i=1

Xi , σ̂2 =
1

N − 1

N∑
i=1

(Xi − m̂)2

For these two last examples, we obtain the following results:

• Ordinary SVGD: m̂ = 1, 99 and σ̂2 = 1, 02

• Noisy SVGD: m̂ = 2, 12 and σ̂2 = 18, 2

However, if we choose another noise, then the results will definitely change (we can see

that by the continuity equation). In the next section, we will use a specific type of noise

that will help us improve the ordinary SVGD.

4.2 Stochastic SVGD

The following algorithm is one of the major contributions to SVGD that we provide in

this article. It is inspired from the Stochastic Gradient Descent (SGD) algorithm.

Let us recall some Statistical Learning basics in order to get to this algorithm. Given

a labelled data set (xi, yi)
N
i=1 where yi is called the label of xi (if yi ∈ R then this is

called a regression problem, and if yi belongs to a finite space, then this is called a

classification problem), our main goal is to learn from this data a certain function f̂ ,

called the predictor, that predicts the label y given an input x. The criterion that is

used to measure the performance of a predictor is the Risk, which is simply defined by

the expectation of a certain loss function L. This loss function can be seen as a penalty

that we give to our predictor f̂ when it predicts a label that is different from the real

one. A typical example of a loss function is the squared-loss : L(f̂(x), y) = ∥f̂(x)− y∥2,
this loss is often used for regression problems.

Hence, any Machine Learning problem can formalized as a Risk Minimization problem:

15



f̂ = argmin
f∈H

Ex,y[L(f(x), y)]

The space H is called the representation space, which contains the models that we

want to use in our problem. For example, in classification problems, this space can be

the set of hyperplanes of normal vector θ.

If we consider the parametric case, where the functions fθ belonging to the space H
are fully determined by a parameter θ, then finding the function f̂ in our optimization

problem becomes finding its parameter θ̂, i.e

θ̂ = arg min
θ∈Rd

Ex,y[L(fθ(x), y)]

In most of the cases, the joint distribution of (x, y) is unknown, then we cannot compute

explicitly the expectation Ex,y[L(fθ(x), y)], so we will estimate it with its empirical

version (Monte-Carlo), and then the Risk Minimization turns out to an Empirical Risk

Minimization problem:

θ̂ = arg min
θ∈Rd

1

N

N∑
i=1

L(fθ(xi), yi)

A classical algorithm to solve this last problem is the Gradient Descent algorithm, which

compute the updates:

θn+1 = θn −
ϵ

N

N∑
i=1

∇L(fθn(xi), yi)

Where ϵ > 0 is called the learning rate. This algorithm converges to a local minimum

of the loss function, and if L is convex, then it converges to its global minimum.

Sometimes, the computation of the gradient ∇L(fθ(xi), yi) can be costly, so to reduce

the complexity of this algorithm, we will update θ is the Gradient Descent algorithm

using only one couple (xk, yk) chosen randomly from our dataset, which means that we

obtain the following algorithm:

θn+1 = θn − ϵ∇L(fθ(xk), yk) (19)

which means that instead of computing the gradient of the loss function at each

couple (xi, yi)
N
i=1, we only do it for a randomly selected couple (xk, yk).

Doing so, we improve so much the complexity of our algorithm, and now many Machine

Learning algorithms use (19) instead of the ordinary gradient descent (see [5]).

Using the same idea, we can construct Stochastic SVGD from the ordinary SVGD.

Indeed, we know that the updates that are done by SVGD are of the form:

Xi
n+1 = Xi

n −
ϵ

N

N∑
j=1

K(Xj
n, X

i
n)∇F (Xj

n)−∇1K(Xj
n, X

i
n)
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Thus the Stochastic SVGD is the following:

Algorithm 3 Stochastic SVGD

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: take a random l ∈ {1, ..., N}
4: Xi

n+1 = Xi
n − ϵ(K(X l

n, X
i
n)∇F (X l

n)−∇1K(X l
n, X

i
n))

This algorithm is better than SVGD in terms of complexity, and the computation

of the gradient in multi-dimension using the finite differences method is costly, in fact,

the complexities of both algorithms are:

• SVGD: O(N2M)

• Stochastic SVGD: O(NM)

In addition, this algorithm has proved his efficiency in simulations, since we obtain for

π = N (2, 1) the following result:

Figure 4: Stochastic SVGD

And the estimators of the means and the variance give us:

• Estimators : m̂ = 2, 06 and σ̂2 = 1, 05

And most importantly, the algorithm converges very fast (in the order of seconds),

whereas the ordianry SVGD take much longer time to generate the same number of

samples. Therefore, people can keep using Stochastic SVGD instead of the ordinary

SVGD to improve the complexity of their simulations and get almost perfect results.

17



A very good result

We know that simulating from a Gaussian mixture is a very hard task, since only

minimizing the KL divergence will not lead us to the desired distribution (see Figure

1) because we will be trapped in one node. However, experiments have shown that

Stochastic SVGD succeeds, as well as SVGD, in simulating Gaussian mixtures. For

example, if we set the target measure π = 2
3N (0, 1) + 1

3N (4, 1), we obtain the following

results:

Figure 5: Gaussian mixture 2
3N (0, 1) + 1

3N (4, 1) with Stochastic SVGD

Although both algorithms give approximately the same result at the end, stochastic

SVGD remains much faster and practical.

We can also regard Stochastic SVGD as a Noisy SVGD with noise:

Bi
n =

ϵ

N

N∑
j=1

K(Xj
n, X

i
n)∇F (Xj

n)−∇1K(Xj
n, X

i
n)−ϵ(K(X l

n, X
i
n)∇F (X l

n)−∇1K(X l
n, X

i
n))

This can be the first step towards the study of the theoretical properties of Stochastic

SVGD.

4.3 Mixing Langevin and SVGD

Both Langevin and SVGD are interesting in practice, so what if we mix them in one

single algorithm called Langevin SVGD. To do so, we know that the updates of

Langevin are the following:

Xi
n+1 = Xi

n − ϵ∇F (Xi
n) +

√
2ϵξin
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And those of SVGD are:

Xi
n+1 = Xi

n −
ϵ

N

N∑
j=1

K(Xj
n, X

i
n)∇F (Xj

n)−∇1K(Xj
n, X

i
n)

So mixing them gives us the following updates (the average of the two updates):

Xi
n+1 = Xi

n −
ϵ

2
∇F (Xi

n) +
√
2ϵξin −

ϵ

2N

 N∑
j=1

∇F (Xj
n)K(Xj

n, X
j
n)−∇K(Xj

n, X
i
n)


And thus we obtain the following algorithm:

Algorithm 4 Langevin SVGD

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: Xi
n+1 = Xi

n − ϵ
2∇F (X

i
n) +

√
2ϵξin − ϵ

2N (
∑N

j=1∇F (X
j
n)K(Xj

n, X
j
n) −

∇1K(Xj
n, Xi

n))

This algorithm gives us a sequence of probability measures (µn)n that satisfy the

following continuity equation:

∂µt
∂t

=
1

2
div(∇F.µt)−

1

2
gradHKL(µt|π) + ∆µt (20)

This can be seen as a weighted descent algorithm, where we try to minimize F (Langevin

part) and interact with the other particles (SVGD) at the same time.

This algorithm performs very well in practice, since it can also simulate well some

complex distributions like Gaussian mixtures. We can see that by testing it with the

following Gaussian mixture: π = 1
2N (0, 1)+ 1

2N (4, 1) and we obtain the following plots:
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Figure 6: Langevin SVGD

We can also mix Langevin and Stochastic SVGD to obtain a much faster algorithm:

Algorithm 5 Stochastic Langevin SVGD

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: take randomly l ∈ {1, ..., N}
4: Xi

n+1 = Xi
n − ϵ

2∇F (X
i
n) +

√
2ϵξin − ϵ

2(∇F (X
l
n)K(X l

n, X
j
n)−∇1K(X l

n, X
i
n))

And as expected, this algorithm works also very well in practice, since it can also

simulate Gaussian mixtures. We can see that too by testing it on with the same Gaussian

mixture as for Langevin SVGD: π = 1
2N (0, 1) + 1

2N (4, 1) and we obtain the following

plots:

Figure 7: Mixture of Langevin and Stochastic SVGD
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Therefore, mixing SVGD and Langevin seems to be a very good idea to simulate

complex distributions. Moreover, we can also see that Langevin coupled with Stochastic

SVGD is better than coupling Langevin and the Ordianry SVGD since we have that

the proportion of each Gaussian (12 and 1
2 in front of each normal distribution) are more

respected in the mixture of Langevin and Stochastic SVGD.

And of course, this algorithm can also be seen as a noisy SVGD, with the following

noises:

• Langevin SVGD: Bi
n = − ϵ

2∇F (X
i
n) +

√
2ϵξin − ϵ

2N (
∑N

j=1∇F (X
j
n)K(Xj

n, X
j
n)−

∇1K(Xj
n, Xi

n))

• Langevin and Stochastic SVGD:Bi
n = − ϵ

2∇F (X
i
n)+

√
2ϵξin+

ϵ
2N

∑N
j=1K(Xj

n, Xi
n)∇F (X

j
n)−

∇1K(Xj
n, Xi

n)− ϵ
2(K(X l

n, X
i
n)∇F (X l

n)−∇1K(X l
n, X

i
n))

Therefore, the study of the theoretical properties of noisy SVGD can help us prove

the theoretical efficiency of these proposed algorithms.

4.4 Bonus: Implementation of Wasserstein Gradient Descent

The Wasserstein Gradient Descent is the Euler discretization of the Wasserstein

Gradient flow, which performs a gradient descent on the Kullback-Leibler divergence

(see WGD). We recall here the WGD updates:

Xn+1 = Xn − ϵ∇ log

(
µn(Xn)

π(Xn)

)
Hence

Xn+1 = Xn − ϵ

(
∇F (Xn) +

∇µn(Xn)

µn(Xn)

)
Its direct implementation is hard because it requires knowing the intermediate dis-

tributions (µn)n obtained throughout the algorithm, which is a very hard task.

However, in this section, we will develop an algorithm that enables us to perform the

Wasserstein Gradient descent using finite number of particles. The main idea here is to

approximate the densities µn with their Kernel estimators.

Definition 4.1 (Kernel estimator of a density). Let K : Rd×Rd −→ R+ be a symmetric

positive definite kernel, which means that: ∀α1, ..., αn ∈ R and ∀x1, ..., xn ∈ Rd we have

that:
n∑
i=1

n∑
j=1

αiαjK(xi, xj) ≥ 0

We can also define a kernel in Rd by: K(x, y) = K(x− y).

Let now X1, ...., XN be random vectors with the same density f. The kernel estimator of

f is defined by:

f̂(t,X1, ..., XN ) =
1

Nh

N∑
i=1

K

(
x− y

h

)
(21)
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where h > 0.

Therefore, we will consider a positive definite kernel, like the Gaussian kernel:

K(x− y) = exp
{
−γ∥x− y∥2

}
And we will approximate the probability densities (µn)n by their kernel estimators. So

the updates will be the following:

Xi
n+1 = Xi

n − ϵ

∇F (Xi
n) +

1
h

∑N
j=1∇K

(
Xi
n−X

j
n

h

)
∑N

j=1K
(
Xi
n−X

j
n

h

)
 (22)

To my best knowledge, this algorithm was discussed in [4], but no one gave a method

to implement it as we do in this paper.

Algorithm 6 Kernelized Wasserstein Gradient Descent

Require: a set X1
0 , ..., X

N
0 ∈ X of N particles, a kernel K, the number of iterations M,

and a step size ϵ > 0

1: for n = 1, 2, ...., M do

2: for i = 1,2,..,N do

3: Xi
n+1 = Xi

n − ϵ

∇F (Xi
n) +

1
h

∑N
j=1 ∇K

(
Xin−Xjn

h

)
∑N
j=1K

(
Xin−Xjn

h

)


We test this algorithm on π = N (2, 1), and by choosing the best window h of the

Gaussian kernel K, we obtain a very good approximation of the target density as shown

in these plots:

Figure 8: Kernelized WGD

Hence, now we got a clear way (rather than Langevin) to implement the Wasser-
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stein Gradient Descent algorithm, and using deterministic updates without introducing

randomness as Langevin does.

5 Conclusion

In this paper, we have proved the convergence of SVGD in the population limit

under weak conditions compared to the proofs that were given in other articles. In fact,

we proved that the coercivity of the potential and the finite divergence between the ini-

tial distribution and the target one are enough to have the convergence. This result is

very interesting, since it shows us that if we choose well the parameters of SVGD (initial

distribution, kernel K, ...), then we are guaranteed to converge to our target π in the

limit of infinite particles (if we have a great number of particles). However, it remains

also of great interest to study the convergence of SVGD in the finite particle regime,

since we cannot work with infinitely large number of particles, because this increase

heavily the complexity of the algorithm, and therefore it will take an enormous time to

converge.

We have also invented new algorithms that mainly adds noise to SVGD. These algo-

rithms improve the complexity of SVGD, since by adding some noise, we make the

algorithm explore more the space, and to avoid that he gets stuck in some local mini-

mum of the Kullback-Leibler divergence, which we want to avoid as much as possible.

The choice of this noise is the hardest task for performing these algorithms, since it

disturbs the limit measure, and we can clearly see that by writing the continuity equa-

tion. And for a specific noise, we invented the Stochastic SVGD, which improves the

ordinary SVGD in complexity and the intuition behind creating this algorithm came

from the well-known Stochastic Gradient Descent algorithm (see [5]), which is widely

used in Deep Learning to train Neural networks.

We examined also the case of mixing two different algorithms: Langevin and SVGD,

which gave us good results for sampling from a Gaussian mixture. Therefore, this algo-

rithm should also be an improvement of the ordinary SVGD and of Langevin, since it

enables at the same time the minimization of the KL divergence, as well as the interac-

tion with other particles.

Finally, we proposed a method to directly implement the Wasserstein Gradient Descent

(WGD) thanks to the kernel estimation of a density, and we got a deterministic al-

gorithm that uses a set of interacting particles (just like SVGD), unlike Langevin that

introduces randomness in generating the Markov Chain, and that generates each particle

individually.
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Appendix

Derivative of the KL divergence

Denote by

F(µt) = KL(µt|π)

Let the family (µt)t satisfy the following continuity equation:

∂µt
∂t

+ div(vtµt) = 0

Then using the chain rule, we have:

dF(µt)

dt
=

d

dt

∫
log

(µt
π

)
µt(x)dx =

∫
dµt(x)

dt
log

(
µt(x)

π(x)

)
+
dµt(x)

dt
dx =

∫
dµt(x)

dt
(log

(
µt(x)

π(x)

)
+1)dx

And using the continuity equation, we have that: dµt(x)
dt = −div(µt(x)vt(x)) then we

replace in the last equation and we do an integration by parts:

dF(µt)

dt
=

∫
−div(µt(x)vt(x))(log

(
µt(x)

π(x)

)
+ 1)dx =

∫
⟨∇ log

(
µt(x)

π(x)

)
, vt(x)⟩µt(x)dx

Then :
dF(µt)

dt
= ⟨∇ log

(
µt(x)

π(x)

)
, vt⟩L2(µt)

Hence, we have proved that:

∇WF(µ) = ∇WKL(µ|π) = ∇ log
(µ
π

)
(23)

Directional derivative of KL

Now we will prove the expression in (5). We have that:

d

dϵ
Kl(T#µ|π)|ϵ=0 = ⟨ϕ,∇ log

(µt
π

)
⟩L2(µ) = −

∫
⟨ϕ(x),∇ log(π(x))⟩µ(x)dx+

∫
⟨ϕ(x),∇µ(x)⟩dx

By integrating by part:

−
∫

⟨ϕ(x),∇ log(π(x))⟩µ(x)dx+
∫
⟨ϕ(x),∇µ(x)⟩dx = −

∫
⟨ϕ(x),∇ log(π(x))⟩µ(x)dx−

∫
div(ϕ(x))µ(x)dx

Finally :

− d

dϵ
Kl(T#µ|π)|ϵ=0 =

∫
(⟨ϕ(x),∇ log(π(x))⟩ − div(ϕ(x)))µ(x)dx
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